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The interplay between activity and elasticity often found in active and living systems triggers a plethora
of autonomous behaviors ranging from self-assembly and collective motion to actuation. Among these,
spontaneous self-oscillations of mechanical structures is perhaps the simplest and most widespread type of
nonequilibrium phenomenon. Yet, we lack experimental model systems to investigate the various
dynamical phenomena that may appear. Here, we introduce a centimeter-sized model system for one-
dimensional elastoactive structures. We show that such structures exhibit flagellar motion when pinned at
one end, self-snapping when pinned at two ends, and synchronization when coupled together with a
sufficiently stiff link. We further demonstrate that these transitions can be described quantitatively by
simple models of coupled pendula with follower forces. Beyond the canonical case considered here, we
anticipate our work to open avenues for the understanding and design of the self-organization and response
of active biological and synthetic solids, e.g., in higher dimensions and for more intricate geometries.
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Introduction.—Active matter systems exhibit excep-
tional collective, nonequilibrium properties resulting in
anomalous dynamical and self-organizing behaviors that
challenge conventional laws of statistical mechanics
[1–10]. While research has extensively focused on active
fluids [2,11]—which consist of collections of individual
active particles with no particular geometry [12–16], active
solids—which have a well defined reference state and
hence exhibit elastic rather than viscous properties at long
timescales [17–19]—have been much less studied, despite
their potential in mimicking living matter and forming
novel active materials [18–20].
Among all kinds of mechanical properties of active

solids, self-oscillations are vital for biological systems such
as flagella and cilia [21–23] and offer the prospect of
autonomous mechanical behaviors in designer materials
[18,19,24]. It is now well established that one-dimensional
active chains exhibit flagellar motion: on the one hand,
experimental studies have reported self-oscillatory behav-
ior and synchronization in biological and colloidal systems
[25–30]; on the other hand, theoretical and numerical
studies have suggested that self-oscillations emerge from
the competition between activity and elasticity [21–
23,26,31–43]. Despite these advances, there are as of yet
few model experimental platforms in which the predicted
bifurcation scenarios that lead to self-oscillations and
synchronization can be verified.
Here, to investigate dynamical transitions in elastoactive

solids, we construct the experimental setup for a simplest
form of active solids by elastically constraining centimeter-
sized active particles in one-dimensional chains that can
freely oscillate in the 2D plane. By controlling the elasticity
of such structures, we uncover the nature of the transition to

self-oscillations and synchronization. We find the transition
to flagellar and self-snapping motion is governed by a
nonlinear feedback between the direction of the active
forces and the nonlinear elastic deflections. We find that
synchronization between two elastoactive chains is medi-
ated by elastically driven alignment, in contrast with active
fluids. Although our proposed experimental platform is
macroscopic, it might nonetheless help to advance our
understanding of elastoactive instabilities that occur at the
smaller scale in biological solids. We further envision that it
will provide design guidelines for autonomous behaviors in
active solids [44,45].
Experimental design of active chains.—Our system

consists of N ¼ 75 cm commercial self-propelled micro-
bots (Hexbug Nano v2) [8,46] elastically coupled by a
laser-cut silicon rubber chain pinned at one end as shown
in Figs. 1(a) and 1(b) [47]. By tuning the width of the
connection [W in Fig. 1(c)], we are able to manipulate the
stiffness of the chain. When constrained at zero velocity,
the microbot exerts a force in the direction of its polari-
zation which is parallel to the chain’s axis at rest and point
in the same direction, toward the anchor point of the chain
[Fig. 1(d)].
Transition to self-oscillations.—The chain with the

largest width in between the active particles was slightly
pushed off from the equilibrium and stayed at the same
position without further significant movements as shown in
Fig. 1(e). We then gradually reduced the width of the
connections, at W ¼ 4.25� 0.1 mm, the self-oscillation
behavior started to emerge [Fig. 1(f)] suggesting a com-
petition between activity and elasticity: active forces from
active particles destabilize the elastic chain, which in
turn, through deformation, reorient the polarization of the
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particle, ultimately leading to self-oscillation. The magni-
tude of the oscillations increases drastically [shown in
Fig. 1(g)] with decreasing W thanks to the competition
between buckling and active force. This oscillatory dynam-
ics can be quantified by the mean curvature ΘðtÞ ≔P

N−1
i¼1 θiþ1ðtÞ − θiðtÞ ¼ θ7 − θ1 and the mean polarization

ΩðtÞ ≔ ð1=NÞPN
i¼1 θiðtÞ, where θiðtÞ is the instantaneous

orientation of particle i with respect to the vertical axis
[Figs. 2(a) and 2(b)]. While chains with large W come to a
standstill, softer chains exhibit a limit cycle [Fig. 2(c)]. The
area of this limit cycle arises directly from a balance of
energy injection with dissipation.
Active pendulums model.—What is the origin of such

transition? Inspired by the Ziegler destabilization paradox
in structural mechanics [52–55] and the existing numerical
models of active filaments [48,56–58], we construct a
discrete model, where we boil the complexity of the elastic
interactions down to three-body bending forces between
the particles and the complexity of the vibration-induced
dynamics to viscous overdamped dynamics. The discrete
model is based on a chain of seven pendulums [shown as
Fig. 2(d)] with one end fixed. The pendulums have a lengthl
and are connected to their neighbors via a torsional spring of
torsional stiffnessC. Each pendulum i is driven by a constant
active force Fa

i ¼ −Faðcos θiex þ sin θieyÞ exerted on its

end and in the direction of the pendulum.We also introduce
isotropic viscosity γ contributing to a dissipative force on
the end of each pendulum that is only dependent on its
velocity, and assume no inertia in the system [59]. We then
collected all the terms in δθi for each i according to virtual-
work theorem and constructed N nonlinear coupled differ-
ential algebraic equations (DAEs) that describe the motion
of the elastoactive chain (further details in Supplemental
Material [47]). There σ ¼ Fal=C is the elastoactive
parameter and τ ¼ γl2=C a characteristic timescale. We
estimate the torsional stiffnessC from their geometry using
beam theory (see Supplemental Material [47]). From the
average velocity of the robots when they are freely moving
va ¼ 0.025� 0.005 m=s and their average forcewhen they
are pinned Fa ¼ 15.7� 3.1 mN [Fig. 1(d)], we estimate
the damping coefficient γ ¼ Fa=va ¼ 0.63� 0.11 N s=m.
Using these parameters, we solve the system of DAEs

numerically (see Supplemental Material [47]) and find a
good agreement with the experimental results, and for the
time series of average polarization [Fig. 2(e)]. We observe an
agreement between the experiments and the simulation in the
trend of the limit cycle [Fig. 2(f)], here the differences are
due to the energy loss in the experimental scenarios. This
agreement shows that nonlinear geometry, torsional stiffness,
active force, and isotropic viscous dissipation are sufficient
ingredients to successfully capture the essence of the self-
oscillation phenomenon. Our elastoactive model is con-
trolled by a single timescale τ and a single nondimensional

FIG. 2. Characterization of the dynamics of elastoactive chains.
(a) Snapshot of the elastoactive chain with W ¼ 17.7 mm during
its self-oscillation. (b) Time series of the angle between the first
and last particle (mean polarization) was one of the parameters we
chose to characterize the system, blue and orange represent the
σ ¼ 0.695 and σ ¼ 0.166 chain, respectively. With the average
of tangential angles of the particles (mean curvature) being
the other parameter, plotting mean polarization (Θ) against
mean curvature (Ω) gives (c) limit cycle showing that active
forces balance with dissipation toward stable self-oscillation.
(d) Schematics of an elastoactive chain of seven pendulums with
active forces. (e),(f) Simulation results at σ ¼ 0.8 showing good
agreement with the experimental results.

FIG. 1. Emergence of self-oscillations in elastoactive chains.
(a) Configurations of seven active particles connected by a
flexible rubber chain. (b) Close-up details of two active particles
unveiling the design of the microbot. (c) A close-up of the link-
age between each particle with width (W), thickness (H) and
length (L). (d) Histogram of the active force measurements
conducted at 0.05 mm=min. (e),(f) Snapshots of the trajectories
of the active particles showing the oscillations changed from self-
amplified to overdamped with W ¼ 5 mm, 4.4 mm, and 2 mm
corresponding to elastoactive number σ ¼ 0.17, 0.21, and 0.80,
respectively. See also Videos in Supplemental Material [47].

PHYSICAL REVIEW LETTERS 130, 178202 (2023)

178202-2



parameter σ, which will allow us to probe the nature of the
transition to self-oscillations in the following.
Supercritical Hopf bifurcation.—We ran experiments

and simulations over a wide range of the elastoactive
parameter σ, collected the time average of the amplitudes
hΘi [Fig. 3(a)] and the rescaled oscillation frequency f × τ
[Fig. 3(b)] in the mean polarization time series and plotted
them against elastoactive parameter σ. While for low values
of σ, the chain remains straight without oscillations, we see
that above a critical value σc ¼ 0.16� 0.005, the oscil-
lation amplitude hΘi increases rapidly as hΘi ∼ ðσ − σcÞ0.5
[Fig. 3(a), inset], while the rescaled frequency increases
linearly. To further elucidate the nature of the transition to
self-oscillations, we carry out a linear stability analysis on
the set of nonlinear coupled equations (see Supplemental
Material [47]), and observe that at σ ¼ 0.15, the real part
of a pair of eigenvalues becomes positive, while the
corresponding imaginary parts of these eigenvalues are
equal and opposite and monotonically increase [Figs. 3(c)
and 3(d)]. This transition is a hallmark of a Hopf bifurca-
tion. The critical elastoactive number decreases with the
length of the chain as ∼1=N3, See Supplemental Material
[47] for simulations and theory, this can be interpreted by
two effects: the Euler buckling load decreases for longer
chains ∼1=N2 while the sum of the active forces grows as
N. The exponent 0.5 in the experimental and numerical
data suggests that this bifurcation is supercritical. To verify
the nature of the bifurcation theoretically, we restrict our

attention to two pendulums with N ¼ 2, which is the
simplest case where the model could exhibit the bifurca-
tion. The time evolution of such an elastoactive chain is
governed by the following equations

τ½2 _θ1 þ _θ2 cos ðθ1 − θ2Þ� ¼ θ2 − 2θ1 þ σ sin ðθ1 − θ2Þ; ð1Þ

τ½ _θ1 cos ðθ1 − θ2Þ þ _θ2� ¼ θ1 − θ2: ð2Þ

In Supplemental Material [47], we use a perturbative
expansion and perform a few algebraic manipulations to
demonstrate that Eqs. (1) and (2) can be mapped onto the
Landau-Stuart equation

dz
dt

¼ ðiþ σ − 3Þzþ
�
i

�
17

4
− σ

�
−
�
σ −

5

2

��
jzj2z; ð3Þ

where z is the complex variable defined by z ≔ θ1þ
i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðσ − 2Þ=ð4 − σÞp
θ2. This equation is the canonical form

of a supercritical Hopf bifurcation. Many earlier works had
observed experimentally or numerically self-oscillation
phenomena [21,25,60] or theoretically proposed models
with Hopf bifurcations [23,31,32,35,48,61]; here, we
unambiguously demonstrate experimentally, numerically,
and theoretically in a single system of active chains that the
supercritical Hopf bifurcation underlies the transition to
self-oscillations and is primarily controlled by the elas-
toactive number σ.
Self-snapping.—When experimenting with the elastoac-

tive chain, we realized that not only does it oscillate when
pinned at one end, it also does oscillate when pinned at two
ends, Fig. 4(a). We find that these oscillations vanish when
the chain is maintained at its undeformed length, but that
they immediately emerge once we compress the chain
along its axis. A passive chain would simply buckle, i.e.,
bend sideways when compressed. In stark contrast, the
elastoactive chain bends sideways, but continuously snaps
by itself from one side to the other. The more the chain is
compressed, the more it oscillates [Fig. 4(c)] and the slower
it self-snaps [Fig. 4(d)]. We find that adding geometrical
constraints to our model (see Supplemental Material [47])
allows us to reproduce the phenomenology qualitatively
[Fig. 4(b)] [62]. While the flagellar motion observed earlier
is ubiquitous in the context of biological structures, this
self-snapping oscillation of buckled elastoactive structures
is much more rare and surprising.
Frequency entrainment synchronization transition.—Our

model system also allows us to explore synchronization
phenomena between two active chains [Figs. 5(a)–5(d)].
We demonstrate experimentally and numerically that an
elastic coupling allows for a frequency entrainment syn-
chronization transition. We selected two chains both with
an elastoactive number σ1 ¼ 0.8 [the chain on the left hand
side in Fig. 5(a)] and an elastoactive number σ2 ¼ 0.6
[the chain on the right hand side in Fig. 5(a)] and connected

FIG. 3. An active system featuring a Hopf bifurcation at
σ ¼ 0.15. Simulation and experimental results showing the
evolution of (a) amplitude and (b) frequency with increasing
σ, respectively, for the chain with N ¼ 7. The inset in (a) is a log-
log plot demonstrating the power law between Θ and σ. (c) Real
and imaginary (d) part of the eigenvalues of the Jacobian of
Eqs. (1) and (2) vs elastoactive number σ for a minimal chain with
N ¼ 2. In all panels, the gray area represents the stable region.
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them via a coupling spring of variable stiffness K. We
also performed simulations over a range of stiffness K that
contains what we have utilized in the experiments [Figs. 5(e)
and 5(f)]. The rescaled coupling stiffness is κ ≔ Kl2=C1

(where C1 is the stiffness of the left chain). To analyze
the synchronization transition, we first extracted the oscil-
lation signals from both chains. We then calculated the
instantaneous phases Φ1ðtÞ and Φ2ðtÞ (see Supplemental
Material [47]) of each time series [Figs. 5(b) and 5(e) for
experiments and simulations, respectively]. For low coupling
stiffness (yellow lines), both Φ1ðtÞ and Φ2ðtÞ increase
linearly, but with a different slope, which can be described
as two chains oscillating with different frequencies. On the
contrary, for large coupling stiffness (brown lines), both
instantaneous phases Φ1ðtÞ and Φ2ðtÞ align on the lowest
slope (i.e., both chains beat at the lowest frequency of the
two). We performed experiments and numerical simulations
and measured the frequency mismatch δν from the slope
of the instantaneous phase difference Ψ ≔ Φ2ðtÞ −Φ1ðtÞ
over a wide range of coupling stiffness and found that
the synchronization transition occurs at the critical value
κ ¼ 1.1 [Figs. 5(c) and 5(f)] [63]. Further numerical

simulations of elastoactive chains with varying σ reveal
that the regime of synchronization exhibits an Arnold
tongue centered about the 1∶1 frequency ratio in the
synchronization regime [Fig. 5(f), inset]. In other words,
the two chains will synchronize for lower coupling if they
have similar elastoactive numbers or if they are closer to
the bifurcation—in this case the transition toward steady
oscillatory synchronized state will take longer.
To rationalize this finding, we show in Supplemental

Material [47] that the instantaneous phase difference ΨðtÞ
between two chains with N ¼ 2 is

dΨ
dt

¼ dν −
ε

cosΨ0

sinðΨ − Ψ0Þ; ð4Þ

FIG. 5. Synchronization of two elastoactive chains with different
elasticity coupled by the first particles only. (a) Snapshot of a pair
of elastoactive chains with different elasticity coupled by another
stiff silicon rubber chain. (b) Evolution of the instantaneous phase
differences [instantaneous phases Φ1 (dashed lines) and Φ2 (solid
lines) in inset] of two elastoactive chains with coupling strength
K ¼ 0.8 (yellow lines) and K ¼ 1.2 (brown lines). (c) Instanta-
neous frequency difference extracted from the instantaneous phase
difference Ψ vs rescaled coupling stiffness κ, with error bars
corresponding to deviations on the linear regression [dashed blue
line and black lines in panel (b)]. (d) Schematics of the numerical
model adding a coupling spring (K) to two previously established
elastoactive chains. (e),(f) Same data as (b),(c) for the numerical
simulations. An Arnold tongue is observed when the frequency
mismatch is plotted against the ratio between both elastoactive
numbers ρ and the stiffness κ [inset of panel (f)].

FIG. 4. Elastoactive chains pinned at both ends. Stills of an
active chain where both ends are pinned with overlaid trajectories
of the Hexbugs. The end-to-end distance between the pinning
points is l ¼ 500 mm (left), l ¼ 475 mm (middle), and l ¼
400 mm (right). The length of the undeformed chain is
L ¼ 500 mm. (b) Model: sketch of the chain pinned at both
ends. (c) Amplitude and (d) frequency of the self-snapping
oscillations vs the compressive strain ðL − lÞ=L. The insets
are the corresponding data from the numerical model defined in
Supplemental Material [47]. The elastoactive number of the chain
is σ ¼ 0.8. See also Videos in Supplemental Material [47].
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where dν, ε, and Ψ0 are functions of the elastoactive
number of each chain and of the coupling stiffness
between the chains (see Supplemental Material [47] for
closed forms). This equation has been well studied before
for the investigation of synchronization phenomena [64].
An analysis of this equation predicts synchronization for
jε= cosψ0j > jdνj, with a square root singularity [64]. As
we show in Supplemental Material [47], this condition is
met when the coupling stiffness exceeds the threshold
value κc ¼ 11=ð4 ffiffiffi

6
p Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðσ − 3Þj1 − ρjp

, where σ is the
elastoactive number of the left chain and where ρ is the
ratio between the elastoactive number of the right chain
over that of the left chain. This result thus demonstrates
that the synchronization scenario of the two elastoactive
chains corresponds to that of a classic nonisochronous
synchronization, which is characterized by a constant
phase shift in the synchronized region. In addition, the
two chains will synchronize for lower coupling if they
are closer to the bifurcation or when they have similar
elastoactive numbers. In summary, we have captured
experimentally, numerically, and analytically the synchro-
nization transition of two elastically coupled active
chains.
Conclusion.—In conclusion, we have shown that elas-

toactive chains exhibit transitions to self-oscillations and
synchronization. Since they exhibit a nonlinear dynamics
that is governed by activity, elasticity, and viscous damp-
ing, our study establishes macroscopic active structures as
a powerful tool to investigate dynamical and autonomous
behavior of active solids and living matter that exhibit
collective self-oscillation at the microscale. Finally,
fascinating future research directions could be taken from
the minimalistic system considered here. For instance,
one could investigate more complex geometries, such as
nonfollower forces [44], more intricate geometrical con-
nections between active particles, two-dimensional struc-
tures, alternative boundary conditions—pinned or moving
clamping points (see Supplemental Material [47])—or
even mechanical responses such as longitudinal or
transverse excitations. These could in particular emulate
peculiar dynamics observed in other contexts, such
as odd elasticity [19] or the non-Hermitian skin effect
[18,65].

The data and codes supporting this study are publicly
available on Zenodo [66].
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